Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573740

RESUMO

Salt (NaCl), is an essential nutrient for survival, while excessive salt can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two co-receptors IR25a and IR76b are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.


Assuntos
Proteínas de Drosophila , Cloreto de Sódio , Animais , Drosophila melanogaster , Faringe , Cloreto de Sódio na Dieta , Drosophila , Proteínas de Drosophila/genética , Neurônios
2.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37904986

RESUMO

Salt is an essential nutrient for survival, while excessive NaCl can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two coreceptors IR25a and IR76b, are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.

3.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201555

RESUMO

High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Cloreto de Sódio na Dieta/farmacologia , Sais/farmacologia , Paladar/fisiologia , Comportamento Alimentar , Açúcares/farmacologia , Cloreto de Sódio/farmacologia , Proteínas de Drosophila/genética
4.
iScience ; 26(1): 105777, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594011

RESUMO

Basic volatiles like ammonia are found in insect environments, and at high concentrations cause an atypical action potential burst, followed by inhibition in multiple classes of olfactory receptor neurons (ORNs) in Drosophila melanogaster. During the period of inhibition, ORNs are unable to fire action potentials to their ligands but continue to display receptor potentials. An increase in calcium is also observed in antennal cells of Drosophila and Aedes aegypti. In the gustatory system, ammonia inhibits sugar and salt responses in a dose-dependent manner. Other amines show similar effects in both gustatory and olfactory neurons, correlated with basicity. The concentrations that inhibit neurons reduce proboscis extension to sucrose in Drosophila. In Aedes, a brief exposure to volatile ammonia abolishes attraction to human skin odor for several minutes. These findings reveal an effect that prevents detection of attractive ligands in the olfactory and gustatory systems and has potential in insect control.

5.
PLoS Genet ; 18(8): e1010357, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998183

RESUMO

The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow for coordinated conveyance of such information to peripheral tissues. Here, we show Ecdysis-Triggering Hormone (ETH) is critical for courtship inhibition after completion of copulation in Drosophila melanogaster. ETH deficiency relieves post-copulation courtship inhibition (PCCI) and increases male-male courtship. ETH appears to modulate perception and attractiveness of potential mates by direct action on primary chemosensory neurons. Knockdown of ETH receptor (ETHR) expression in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D also is critical for normal levels of PCCI after mating. ETHR knockdown in OR67D-expressing neurons or GR32A-expressing neurons relieves PCCI. Finally, ETHR silencing in the corpus allatum (CA), the sole source of juvenile hormone, also relieves PCCI; treatment with the juvenile hormone analog methoprene partially restores normal post-mating behavior. We find that ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Corte , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hormônios Juvenis/metabolismo , Masculino , Neurônios/metabolismo , Comportamento Sexual Animal/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911758

RESUMO

Receptors for bitter, sugar, and other tastes have been identified in the fruit fly Drosophila melanogaster, while a broadly tuned receptor for the taste of acid has been elusive. Previous work showed that such a receptor was unlikely to be encoded by a gene within one of the two major families of taste receptors in Drosophila, the "gustatory receptors" and "ionotropic receptors." Here, to identify the acid taste receptor, we tested the contributions of genes encoding proteins distantly related to the mammalian Otopertrin1 (OTOP1) proton channel that functions as a sour receptor in mice. RNA interference (RNAi) knockdown or mutation by CRISPR/Cas9 of one of the genes, Otopetrin-Like A (OtopLA), but not of the others (OtopLB or OtopLC) severely impaired the behavioral rejection to a sweet solution laced with high levels of HCl or carboxylic acids and greatly reduced acid-induced action potentials measured from taste hairs. An isoform of OtopLA that we isolated from the proboscis was sufficient to restore behavioral sensitivity and acid-induced action potential firing in OtopLA mutant flies. At lower concentrations, HCl was attractive to the flies, and this attraction was abolished in the OtopLA mutant. Cell type-specific rescue experiments showed that OtopLA functions in distinct subsets of gustatory receptor neurons for repulsion and attraction to high and low levels of protons, respectively. This work highlights a functional conservation of a sensory receptor in flies and mammals and shows that the same receptor can function in both appetitive and repulsive behaviors.


Assuntos
Ácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Paladar/fisiologia , Potenciais de Ação/genética , Animais , Proteínas de Drosophila/genética , Inativação Gênica , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Mutação , Isoformas de Proteínas , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiologia
7.
J Neurosci ; 41(50): 10222-10246, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753739

RESUMO

Food choice, in animals, has been known to change with internal nutritional state and also with variable dietary conditions. To better characterize mechanisms of diet-induced plasticity of food preference in Drosophila melanogaster, we synthesized diets with macronutrient imbalances and examined how food choice and taste sensitivity were modified in flies that fed on these diets. We found that dietary macronutrient imbalances caused compensatory behavioral shifts in both sexes to increase preference for the macronutrient that was scant in the food source, and simultaneously reduce preference for the macronutrient that was enriched. Further analysis with females revealed analogous changes in sweet taste responses in labellar neurons, with increased sensitivity on sugar-reduced diet and decreased sensitivity on sugar-enriched diet. Interestingly, we found differences in the onset of changes in taste sensitivity and behavior, which occur over 1-4 d, in response to dietary sugar reduction or enrichment. To investigate molecular mechanisms responsible for diet-induced taste modulation, we used candidate gene and transcriptome analyses. Our results indicate that signaling via Dop2R is involved in increasing cellular and behavioral sensitivity to sugar as well as in decreasing behavioral sensitivity to amino acids on dietary sugar reduction. On the other hand, cellular and behavioral sensitivity to sugar relies on dilp5 and a decrease in sugar preference following dietary sugar abundance was correlated with downregulation of dilp5 Together, our results suggest that feeding preference for sugar and amino acid can be modulated independently to facilitate food choice that accounts for prior dietary experience.SIGNIFICANCE STATEMENT Animals adjust their feeding preferences based on prior dietary experiences. Here, we find that upon dietary macronutrient deprivation, flies undergo compensatory changes in food preference. The altered preference correlates with changes in peripheral taste sensitivity. While Dop2R mediates changes following dietary sugar reduction, downregulation of dilp5 is associated with changes caused by a sugar-enriched diet. This study contributes to a better understanding of neurophysiological plasticity of the taste system in flies, and its role in facilitating adjustment of foraging behavior based on nutritional requirements.


Assuntos
Drosophila melanogaster/fisiologia , Preferências Alimentares/fisiologia , Nutrientes , Transdução de Sinais/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Insulinas/metabolismo , Masculino , Receptores de Dopamina D1/metabolismo
8.
Plant Cell ; 33(11): 3513-3531, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34402905

RESUMO

PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
9.
Plant Cell ; 32(8): 2508-2524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487563

RESUMO

Cell wall assembly requires harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRAGILE FIBER1 (FRA1) kinesin to facilitate their secretion along cortical microtubules. The cortical microtubule cytoskeleton thus may provide a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown. Here, we show that the tail region of the Arabidopsis (Arabidopsis thaliana) FRA1 kinesin physically interacts with cellulose synthase-microtubule uncoupling (CMU) proteins that are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but differentially affected the protein levels and microtubule localization of CMU1 and CMU2, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis plants. We propose that modulation of CMU protein levels and microtubule localization by FRA1 provides a mechanism that stabilizes the sites of deposition of both cellulose and matrix polysaccharides.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Arabidopsis/crescimento & desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação , Ligação Proteica , Transporte Proteico
10.
ACS Appl Mater Interfaces ; 12(12): 14265-14271, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118407

RESUMO

Typical syntheses of conjugated polymers rely heavily on organometallic reagents and metal-catalyzed cross-coupling reactions. Here, we show that an environmentally benign aldol polymerization can be used to synthesize poly(bisisoindigo), an analog of polyisoindigo with a ring-fused structural repeat unit. Owing to its extended conjugation length, poly(bisisoindigo) absorbs across the UV/vis/NIR spectrum, with an absorption tail that reaches 1000 nm. Due to the four electron-deficient lactam units on each repeat unit, poly(bisoindigo) possesses a low-lying LUMO, which lies at -3.94 eV relative to vacuum. Incorporation of the ring-fused monomer unit also lowered the overall torsional strain in the polymer backbone (relative to polyisoindigo), and the polymer was successfully used in prototype unipolar n-channel organic thin-film transistors.

11.
Elife ; 82019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403399

RESUMO

Male courtship is provoked by perception of a potential mate. In addition, the likelihood and intensity of courtship are influenced by recent mating experience, which affects sexual drive. Using Drosophila melanogaster, we found that the homolog of mammalian neuropeptide Y, neuropeptide F (NPF), and a cluster of male-specific NPF (NPFM) neurons, regulate courtship through affecting courtship drive. Disrupting NPF signaling produces sexually hyperactive males, which are resistant to sexual satiation, and whose courtship is triggered by sub-optimal stimuli. We found that NPFM neurons make synaptic connections with P1 neurons, which comprise the courtship decision center. Activation of P1 neurons elevates NPFM neuronal activity, which then act through NPF receptor neurons to suppress male courtship, and maintain the proper level of male courtship drive.


Assuntos
Corte , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Vias Neurais/fisiologia , Neuropeptídeos/metabolismo , Animais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
12.
Front Plant Sci ; 10: 1808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082353

RESUMO

PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.

13.
Dev Cell ; 44(5): 642-651.e5, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29503159

RESUMO

Spatiotemporal regulation of kinesins is essential for microtubule-dependent intracellular transport. In plants, cell wall deposition depends on the FRA1 kinesin, whose abundance and motility are tightly controlled to match cellular growth rate. Here, we show that an importin-ß, IMB4, regulates FRA1 activity in a developmental manner. IMB4 physically interacts with a PY motif in the FRA1 motor domain and inhibits its motility by preventing microtubule binding, while also protecting FRA1 against proteasome-mediated degradation, thus providing a mechanism to couple the motility and stability of FRA1. This regulatory mechanism is likely to be broadly applicable, based on the conservation of the PY motif in the motor domains of plant and animal kinesins and the direct interaction of multiple plant kinesins with IMB4. Together, our data establish IMB4 as a multi-functional regulator of FRA1 and reveal a mechanism for how plants control the magnitude of cargo transport needed for cell wall assembly.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/fisiologia , beta Carioferinas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Transporte Proteico , Homologia de Sequência , beta Carioferinas/genética
14.
J Cell Sci ; 130(7): 1232-1238, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219953

RESUMO

Processivity is important for kinesins that mediate intracellular transport. Structure-function analyses of N-terminal kinesins (i.e. kinesins comprising their motor domains at the N-terminus) have identified several non-motor regions that affect processivity in vitro However, whether these structural elements affect kinesin processivity and function in vivo is not known. Here, we used an Arabidopsis thaliana kinesin-4, called Fragile Fiber 1 (FRA1, also known as KIN4A), which is thought to mediate vesicle transport, to test whether mutations that alter processivity in vitro lead to similar changes in behavior in vivo and whether processivity is important for the function of FRA1. We generated several FRA1 mutants that differed in their 'run lengths' in vitro and then transformed them into the fra1-5 mutant for complementation and in vivo motility analyses. Our data show that the behavior of processivity mutants in vivo can differ dramatically from in vitro properties, underscoring the need to extend structure-function analyses of kinesins in vivo In addition, we found that a high density of processive motility is necessary for the physiological function of FRA1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Inativação Gênica , Cinesinas , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Fosforilação , Domínios Proteicos , Serina/genética
15.
Cell Rep ; 18(3): 737-750, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099851

RESUMO

Amino acid taste is expected to be a universal property among animals. Although sweet, bitter, salt, and water tastes have been well characterized in insects, the mechanisms underlying amino acid taste remain elusive. From a Drosophila RNAi screen, we identify an ionotropic receptor, Ir76b, as necessary for yeast preference. Using calcium imaging, we identify Ir76b+ amino acid taste neurons in legs, overlapping partially with sweet neurons but not those that sense other tastants. Ir76b mutants have reduced responses to amino acids, which are rescued by transgenic expression of Ir76b and a mosquito ortholog AgIr76b. Co-expression of Ir20a with Ir76b is sufficient for conferring amino acid responses in sweet-taste neurons. Notably, Ir20a also serves to block salt response of Ir76b. Our study establishes the role of a highly conserved receptor in amino acid taste and suggests a mechanism for mutually exclusive roles of Ir76b in salt- and amino-acid-sensing neurons.


Assuntos
Aminoácidos/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Receptores Ionotrópicos de Glutamato/metabolismo , Canais de Sódio/metabolismo , Paladar/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/fisiologia , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Feminino , Masculino , Microscopia Confocal , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Interferência de RNA , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Receptores Ionotrópicos de Glutamato/genética , Canais de Sódio/genética , Cloreto de Sódio/farmacologia , Açúcares/farmacologia , Paladar/fisiologia
16.
eNeuro ; 3(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588303

RESUMO

Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions.


Assuntos
Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Acetona , Potenciais de Ação , Animais , Comportamento Animal/fisiologia , Diacetil , Drosophila melanogaster , Feminino , Odorantes , Estimulação Física , Receptores Odorantes/metabolismo
17.
Plant Physiol ; 167(3): 780-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25646318

RESUMO

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Celulose/metabolismo , Técnicas de Inativação de Genes , Glucosiltransferases/metabolismo , Lignina/metabolismo , Mutação , Oryza/metabolismo , Pectinas/metabolismo , Fenótipo , Transporte Proteico , Xilema/citologia
18.
Plant Cell ; 26(4): 1570-1585, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24692422

RESUMO

Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.

19.
BMC Plant Biol ; 13: 189, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24274232

RESUMO

BACKGROUND: PIN-FORMED (PIN) efflux carriers contribute to polar auxin transport and plant development by exhibiting dynamic and diverse asymmetrical localization patterns in the plasma membrane (PM). Phosphorylation of the central hydrophilic loop (HL) of PINs has been implicated in the regulation of PIN trafficking. Recently, we reported that a phosphorylatable motif (M3) in the PIN3-HL is necessary for the polarity, intracellular trafficking, and biological functions of PIN3. In this study, using the root hair system for PIN activity assay, we investigated whether this motif has been functionally conserved among long-HL PINs. RESULTS: Root hair-specific overexpression of wild-type PIN1, 2, or 7 greatly inhibited root hair growth by depleting auxin levels in the root hair cell, whereas overexpression of M3 phosphorylation-defective PIN mutants failed to inhibit root hair growth. Consistent with this root hair phenotype, the PM localization of M3 phosphorylation-defective PIN1 and PIN7 was partially disrupted, resulting in less auxin efflux and restoration of root hair growth. Partial formation of brefeldin A-compartments in these phosphorylation-mutant PIN lines also suggested that their PM targeting was partially disrupted. On the other hand, compared with the PIN1 and PIN7 mutant proteins, M3-phosphorylation-defective PIN2 proteins were almost undetectable. However, the mutant PIN2 protein levels were restored by wortmannin treatment almost to the wild-type PIN2 level, indicating that the M3 motif of PIN2, unlike that of other PINs, is implicated in PIN2 trafficking to the vacuolar lytic pathway. CONCLUSIONS: These results suggest that the M3 phosphorylation motif has been functionally conserved to modulate the intracellular trafficking of long-HL PINs, but its specific function in trafficking has diverged among PIN members.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Androstadienos/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Wortmanina
20.
Curr Opin Plant Biol ; 16(6): 704-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120300

RESUMO

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have conserved as well as specialized functions. These functions depend on mechanisms that regulate when, where and what kinesins transport. In this review, we highlight recent studies that have revealed conserved modes of regulation between plant kinesins and their non-photosynthetic counterparts. These findings lay the groundwork for understanding how plant kinesins are differentially engaged in various cellular processes that underlie plant growth and development.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Cinesinas/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Biológico , Microtúbulos/metabolismo , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...